Toward a quantitative description of large-scale neocortical dynamic function and EEG.
نویسنده
چکیده
A general conceptual framework for large-scale neocortical dynamics based on data from many laboratories is applied to a variety of experimental designs, spatial scales, and brain states. Partly distinct, but interacting local processes (e.g., neural networks) arise from functional segregation. Global processes arise from functional integration and can facilitate (top down) synchronous activity in remote cell groups that function simultaneously at several different spatial scales. Simultaneous local processes may help drive (bottom up) macroscopic global dynamics observed with electroencephalography (EEG) or magnetoencephalography (MEG). A local/global dynamic theory that is consistent with EEG data and the proposed conceptual framework is outlined. This theory is neutral about properties of neural networks embedded in macroscopic fields, but its global component makes several qualitative and semiquantitative predictions about EEG measures of traveling and standing wave phenomena. A more general "metatheory" suggests what large-scale quantitative theories of neocortical dynamics may be like when more accurate treatment of local and nonlinear effects is achieved. The theory describes the dynamics of excitatory and inhibitory synaptic action fields. EEG and MEG provide large-scale estimates of modulation of these synaptic fields around background levels. Brain states are determined by neuromodulatory control parameters. Purely local states are dominated by local feedback gains and rise and decay times of postsynaptic potentials. Dominant local frequencies vary with brain region. Other states are purely global, with moderate to high coherence over large distances. Multiple global mode frequencies arise from a combination of delays in corticocortical axons and neocortical boundary conditions. Global frequencies are identical in all cortical regions, but most states involve dynamic interactions between local networks and the global system. EEG frequencies may involve a "matching" of local resonant frequencies with one or more of the many, closely spaced global frequencies.
منابع مشابه
Statistical mechanics of neocortical interactions: Training and testing canonical momenta indicators of EEG
Abstract—A series of papers has developed a statistical mechanics of neocortical interactions (SMNI), deriving aggregate behavior of experimentally observed columns of neurons from statistical electricalchemical properties of synaptic interactions. While not useful to yield insights at the single neuron level, SMNI has demonstrated its capability in describing large-scale properties of short-te...
متن کاملStatistical Mechanics of Neocortical Interactions: a Scaling Paradigm Applied to Electroencephalography Statistical Mechanics of Neocortical ... -2- Lester Ingber
A series of papers has developed a statistical mechanics of neocortical interactions (SMNI), deriving aggregate behavior of experimentally observed columns of neurons from statistical electrical-chemical properties of synaptic interactions. While not useful to yield insights at the single neuron level, SMNI has demonstrated its capability in describing large-scale properties of short-term memor...
متن کاملNeocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs.
The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical ...
متن کاملNeocortical Dynamics at Multiple Scales : EEG Standing
The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical ...
متن کاملStatistical mechanics of neocortical interactions: Canonical momenta indicators of electroencephalography
A series of papers has developed a statistical mechanics of neocortical interactions (SMNI), deriving aggregate behavior of experimentally observed columns of neurons from statistical electrical-chemical properties of synaptic interactions. While not useful to yield insights at the single neuron level, SMNI has demonstrated its capability in describing large-scale properties of short-term memor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Behavioral and brain sciences
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2000